Articles

Discover our scientific articles about electromagnetic simulation.

EMC / E3 simulation

A combined FDTD/TLM time domain method to solve efficiently electromagnetic problems (2013)

Nathanael Muot, Christophe Girard, Xavier Ferrieres, and Elodie Bachelier

Modeling complex networks of cables inside structures and modeling disjoint objects connected by cables inside large computational domains with respect to the wavelength are two problems that currently present many diffculties. In this paper, we propose a 1D/3D hybrid method in time domain to solve efficiently these two kinds of problems. The method, based upon finite difference schemes, couples Maxwell’s equations to evaluate electromagnetic fields in 3D domains and the transmission line equations to evaluate currents and voltages on cables. Some examples are presented to show the interest of this approach.

Lightning Effects on Interconnected Ground Installations : Hybrid 3D-1D Numerical Approach in Time Domain (2012)

Nathanael Muot, Christophe Girard, Xavier Ferrieres, and Elodie Bachelier

In this paper, we present a strategy based on a multidomain hybrid approach in the time domain by coupling 3D methods (FDTD, FVTD …) with a transmission line (TL) method to simulate large-scale electromagnetic problems. The paper gives the main keys to couple together the numerical methods based on different formulations. The challenge is first to have an implicit definition of the electromagnetic field in the theory of transmission lines, and secondly to take into account the effects of the soil on the induced currents and on the electromagnetic field. The aim of this work is to propose an efficient numerical strategy to compute the electromagnetic induced effects of lightning on large and complex sites, composed of several interconnected distant buildings.

HIRF Synthetic Environment: an innovative approach for HIRF design, analysis and certification of aircraft and rotorcraft (2012)

M. Bozzetti, C. Girard, A. Hoque, A. Marvin, J.P. Moreoau, J.P. Parmantier, M.S. Sarto, C. G. Spiliotopoulos

HIRF SE (High Intensity Radiated Fields Synthetic Environment) is a computational tool for the simulation and analysis of electromagnetic field interaction with aircraft and rotorcraft in HIRF radio frequency range (10 kHz-40 GHz). The tool allows the simulation of air vehicle interaction with both farfield and near-field sources having any polarization and position in the presence or not of the ground, and it will be applied during design and certification phases in order to cope with the increasing complexity of air vehicles electronic/electric architectures and of the electromagnetic environment. The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 205294.

HIRF interaction with metallic aircrafts. A comparison between TD and FD methods (2012)

J. Alvarez, L. Angulo, M. Bandinelli, H.-D. Brüns, M. Francavilla, S. Garcia, R. Guidi, G. Gutierrez, C. Jones, M. Kunze, J.-P. Martinaud, I. Munteanu, M. Panitz, J.-P. Parmantier, P. Pirinoli, Z. Řezníček, G. Salin, A. Schröder, P. Tobola, F. Vipiana

Computer simulations provide invaluable information in HIRF (High Intensity Radiated Field) assessment of air vehicles. In this paper, we use a numerical model of a fictive metallic aircraft provided by EVEKTOR, to show a cross comparison of results found by some of the full-wave solvers developed by partners participating in the HIRF-SE project of the 7th EU FP. Time domain and frequency domain simulators, based on differential, integral and variational formulations of Maxwell’s equations, are employed in this work.

Antenna Placement

Evaluation de l’implantation et du découplage d’antennes large bande sur porteur par des modèles équivalents implantés dans une méthode FDTD (CEM 2018)

X. Romeuf, T. Strub, C. Girard, C. Chanel, A. Guena, N. Ticaud, C. Guiffaut, A. Reineix

Cet article présente une méthodologie et un outillage complet permettant l’évaluation de l’implantation et le découplage d’antennes sur un système complexe. Cette méthodologie s’appuie sur des modèles large bande de type sources dipolaires qui sont mise en oeuvre au sein de la méthode FDTD (TEMSI-FD).
Une validation sur une application industrielle réaliste est présentée et permet de démontrer le caractère opérationnel de la méthode et des outils développés.
La capacité à pouvoir synthétiser les modèles dipolaires à partir de données, tant numériques qu’expérimentales, disponibles dans l’industrie permet d’envisager son utilisation sur de nombreuses problématiques industrielles actuelles et futures.

Discontinuous galerkin Method

Implémentation massivement parallèle d’une méthode Galerkin discontinue appliquée à l’électromagnétisme en domaine temporel – Application aux intéractions onde/corps humain (CEM 2018)

N. Muot, B. Weber, T. Strub, A. Guena, S. Lamesch

Dans le contexte des objets connectés proches du corps humain (smartphones, tablettes, quantified self, biocapteurs, textiles intelligents, …) la modélisation de l’interaction onde corps humain revêt un véritable enjeu industriel et sociétal. Pour ce type de dispositif, la présence du corps humain influe fortement sur les performances des antennes et inévitablement sur la consommation. La prise en compte dès les phases de design s’avère indispensable et demande des ressources de calcul très importantes qui ne sont souvent disponibles qu’au travers du HPC (High-Performance Computing). Cet article présente une méthode de Galerkin Discontinu dans le domaine temporel (GDTD) appliquée à l’électromagnétisme optimisée pour architecture HPC multi-GPU et son application pour étudier les effets du corps humain sur un dispositif rayonnant de type Bluetooth Low Energy (BLE).
– Optimisation d’un algorithme Galerkin Discontinu en OpenCL appliqué à la simulation en électromagnétisme (NUMELEC 2016)
Dans cet article, nous présentons les résultats d’optimisation sur GPU et CPU d’un algorithme Galerkin Discontinu appliqué à l’électromagnétisme et codé en OpenCL et MPI. Cet algorithme a initialement été optimisé pour être exécuté en parallèle sur plusieurs GPUs et ensuite adapté pour CPUs. Les GPUs et CPUs nécessitent une implémentation propre à leur architecture matérielle. Nous commençons par préciser le contexte d’application. Dans un second temps, nous présentons les optimisations GPU ainsi que les performances obtenues sur GPU et CPU avec cette version du code. Enfin, nous décrivons les adaptations qui ont permis de décupler les performances sur CPU.

Reduced Vlasov-Maxwell modeling (2014)

P. Helluy, M. Massaro, L. Navoret, N. Pham, and T. Strub

We describe CLAC (Conservation Laws Approximation on many Cores), a generic Discontinuous Galerkin (DG) solver for three-dimensional electromagnetic simulations. The solver runs on clusters of GPUs, it is based on hybrid parallelism using the OpenCL and MPI libraries. We explain how to solve the Vlasov-Maxwell equations with this tool. We present several numerical results.

Stratégie multi-méthodes dans le domaine temporel (CEM 2014)

T. Volpert, V. Mouysset, X. Ferrieres, N. Deymier, N. Muot, B. Pecqueux

Dans cet article nous présentons une stratégie multiméthodes pour la simulation de problèmes de CEM. Dans cette approche, nous utilisons des méthodes d’ordre élevé permettant de tenir compte de la courbure des géométries et de limiter les erreurs de dispersion et/ou de dissipation. Ces méthodes sont basées sur des schémas Galerkin Discontinu et différences finies utilisant des approximations spatiales d’ordre élevé. Enfin, pour tenir compte des câbles dans les structures, nous utilisons une équation de ligne de transmission, dans le domaine temporel, que nous couplons aux méthodes de calcul de champs 3D. Après la présentation du principe de chaque méthode, nous donnons des exemples de validation permettant de montrer leur intérêt pour la CEM.

Méthode Galerkin discontinue appliquée à l’électromagnétisme en domaine temporel (CEM 2014)

T. Strub, N. Muot, P. Helluy

Dans cet article, nous présentons les aspects numériques du projet GREAT (Galerkin Resolution for Electromagnetic Applications in the Time domain) dont la finalité première est de proposer un environnement « industriel » pour traiter des problèmes électromagnétiques tridimensionnels instationnaires. Cet environnement est bâti autour d’une méthode numérique de type Galerkin Discontinue (GD) et d’un outillage de maillage dédié.

Industrialisation d’une méthode Galerkin Discontinue appliquée à l’électromagnétisme en domaine temporel – Résumé (CEM 2014)

P. Helluy, T. Strub, N. Muot

Dans cet article, nous présentons les aspects numériques du projet GREAT (Galerkin Resolution for Electromagnetic Applications in the Time domain) dont la finalité première est de proposer un environnement « industriel » pour traiter des problèmes électromagnétiques tridimensionnels instationnaires. Cet environnement est bâti autour d’une méthode numérique de type Galerkin Discontinue (GD) et d’un outillage de maillage dédié.

Multi-GPU numerical simulation of electromagnetic waves (ESAIM: proceedings, 2014, 1-10)

P. Helluy, T. Strub

In this paper we present three-dimensional numerical simulations of electromagnetic waves. The Maxwell equations are solved by the Discontinuous Galerkin (DG) method. For achieving high performance, we exploit two levels of parallelism. The coarse grain parallelism is managed through MPI and a classical domain decomposition. The fine grain parallelism is managed with OpenCL in order to optimize the local computations on multicore processors or GPU’s. We present several numerical experiments and performance comparisons.

Cable Harness Modelisation

Simulation en coopérative sur un système d’interconnexion dans une structure massivement composite (CEM 2018)

S. Bertuol, I. Junqua, J.P. Parmantier, N. Muot, T. Strub, C. Giraudon

Ce document présente l’application d’un scénario de simulation coopérative de type couplage champ-câble reposant sur le formalisme d’Agrawal. Il présente l’ensemble des outils utilisés ainsi que la plateforme informatique permettant de jouer ce scénario qui a été validé sur un caisson composite carbone étudié dans le cadre du projet H2020 EPICEA. Ce caisson est composé de 3 cavités dans lesquelles circule un câblage. Les calculs de champs incidents sont réalisés à l’aide d’un code de calcul FDTD et les calculs de couplage sur câbles, à l’aide de deux codes de calcul MTLN (Multiconductor Transmission Line Network) dans les domaines fréquentiel et temporel. Dans ce scénario, le câblage peut être considéré comme mono-conducteur, offrant la possibilité d’une validation par rapport à un calcul de type « full 3D » ou multiconducteur. Les
configurations de calcul sont de type injection de courant de type foudre et illumination par onde plane (HIRF).

Détermination de la diaphonie entre plusieurs harnais complexes au sein d’un avion (CEM 2016)

Charles Jullien, Michael Ridel, Cyril Giraudon, Jérôme Genoulaz, Anca Dieudonné, Jean-Philippe Parmantier, Solange Bertuol, Christophe Girard

Ce document décrit un process permettant de valider une installation de harnais dans un aéronef pour la CEM d’un point de vue diaphonie inter et intra harnais. Un outil numérique a été développé et validé sur deux cas tests. Le premier concerne 2 harnais avec 3 câbles et le second concerne 15 harnais avec plus de 1400 liaisons. Ce travail permet de mettre en évidence la capacité de prendre en compte une installation avion contenant un nombre significatif de harnais en vue de la validation CEM d’une installation.

Modelling of HIRF coupling on Complex Cable Architectures (2011)

J-P. Parmantier, M. Ridel, S. Bertuol, I. Junqua, C. Giraudon, C. Girard, F. Terrade, J-P. Moreau

This paper describes the procedure put to the fore in the EC’s FP7 HIRF-SE project for carrying out HIRF simulations at aircraft level. The solution proposed is based on the use of MTLN models cable links under test and a 3D full wave solver including thin wire models in order to take into account coupling with the whole structure and the rest of the wiring. Further simplifications based on the cable route topology are made in order to reduce the number of equivalent wires in the final MTLN models.

A Time Domain Hybrid Approach to Study Buildings Connected by Cables (2011)

N. Muot, E. Bachelier, X. Ferrieres, and C. Girard

In term of application for large and complex systems, many hybridizations and multidomain approaches have been studied in different ways and have shown their capabilities to deal with electromagnetic problems. However, as far as we are interested in applications like lightning electromagnetic induced effects on buildings, interconnected by powerlines or communication networks, the usual multidomain methods needs to be improved. For those problems, the challenge is to reduce the computational problem size (for the area) between buildings. The problem is to take into account the interactions between soil, buildings and cables, without a 3D meshing of the global scene. The paper presents a multidomain strategy based on a hybrid approach in the time domain: by coupling 3D methods (FDTD, FVTD…) with a transmision line method, first step of the general problem.
The idea is to define a 3D problem around each building and a 1D problem along the transmission line. Then, the hybridization strategy consists in making exchanges of some quantities at each interface between the two problems. In our way of coupling, the considered interfaces are reduced to a dipole on which we propose to exchange data of both domain by the introduction of a local Thevenin equivalent circuit. Through the impedance, the local condition of continuity at the virtual interface of the line is ensured. On the other hand, the generator send the signal relative to the other computational domain.
Considering the applied problem we are interested in, the next step to be investigated is the effect of the soil conductivity on the induced effects, between buildings, grounding and networks. The paper will also present the actual fields of investigation for these specific aspects.

PEEC Modelisation

Improvements of a Numerical Methodology for Computing Near-Field Parasitic Electromagnetic Emissions of Solar Panels (August 2014)

Guillaume Andrieu, Member, IEEE, Johan Panh, Alain Reineix, Member, IEEE, Patrice Pélissou, Pierre Delannoy, Christophe Girard, Xavier Romeuf, and Dominique Schmitt

Improvements of a methodology able to compute the parasitic electromagnetic emissions of a solar panel are presented in this paper in order to handle real solar panels. Thus, the method is able to take into account solar panels with triplejunction solar cells, series or shunt power regulation system, and honeycomb composite panels. This numerical method is validated experimentally by comparing the near magnetic field emitted by a real solar panel and calculated by the method.

Homogenization of Composite Panels From a Near-Field Magnetic Shielding Effectiveness Measurement (2012)

Guillaume Andrieu, Johan Panh, Alain Reineix, Patrice Pélissou, Christophe Girard, Xavier Romeuf, and Dominique Schmitt

A simple method permitting to obtain a homogeneous panel from a strongly in homogeneous panel is presented. The method consists of determining the characteristics of a panel having an equivalent conductivity obtained from a near-field magnetic shielding effectiveness measurement. Thus, the method suitable for frequencies lower than 1 MHz does not require the knowledge of the detailed internal geometry of the sample. After the validation of the measurement setup on a copper plate of known conductivity, two space composite panels are characterized and homogenized.

Low-Frequency Characterization of Composite Panels from a Near-Field Magnetic Shielding Effectiveness Measurement (2011)

Guillaume Andrieu, Johan Panh, Alain Reineix, Patrice Pelissou, Christophe Girard, Xavier Romeuf, Dominique Schmitt

This paper presents a simple method allowing to obtain an homogeneous panel model from an inhomogeneous composite panel thanks to a near-field magnetic shielding effectiveness (MSE) measurement in the low frequency range (f < 1 MHz). The method, which does not require the knowledge of the detailed internal geometry of the panel, consists in determining the “equivalent conductivity” of the homogeneous
model. After the validation of the measurement setup on a copper plate of known conductivity, homogenization of 3 different samples is presented. Finally, homogenization of samples made of different inhomogeneous layers previously characterized separately is presented and validated.

An accurante method to compute the parasitic electromagnetic radiations of real solar panels (2010)

G. Andrieu, J. Panh, A. Reineix, P. Pelissou, C. Girard, P. Delannoy, X. Romeuf, D. Schmitt

The methodology [1] able to compute the parasitic electromagnetic (EM) radiations of a solar panel is highly improved in this paper to model real solar panels. Thus, honeycomb composite panels, triple junction solar cells and serie or shunt regulation system can now be taken into account. After a brief summary of the methodology, the improvements are detailed. Finally, some encouraging frequency and time-domain results of magnetic field emitted by a real solar panel are presented.

A high fidelity simulation tool for conducted EMC analysis at system level (2010)

P. Pelissou, P. Delannoy, X.Romeuf, P. Laget

The purpose of this paper is to present a high fidelity simulation tool named “EMCASL” able to predict the disturbances conducted on the power bus of a spacecraft, and more generally, of any complex system.
This advanced simulation tool handles the ‘conducted noise’ electromagnetic compatibility among the various units and subsystems of the satellite and enables engineers to evaluate the effects of EMI on flight system, so that potential EMC problems can then be identified and solved in a timely manner.
The system noise model is based on time and frequency domain equipment measurement in both differential and common mode and on appropriate behavioural modelling of any power conditioning and distribution units.
The tool has been developed by Astrium Satellites and AxesSim in the frame of an ESA contract 22990/09/NL/GLC.

You need more informations ? Contact us!
Share This